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The Doering-Constantin approach [Phys.

Rev.

Lett. 69, 1648 (1992)] to derive an upper

bound on the dissipation rate in terms of a properly chosen stationary flow profile can be (slightly)
improved by casting it in the form of a variational principle for the profile. Only Schwarz’s inequality
is needed to prove this. Its solution can be evaluated analytically. The mean dissipation bound is
e < U®L™'/9+/2 provided the Reynolds number Re=UL /v exceeds 12v/2, and the mean transverse
momentum flux is bounded by Js; < (vL~*)?Re?/9v/2.

PACS number(s): 03.40.Gc, 47.27.Nz

I. INTRODUCTION

Turbulent flow is a very complex dynamical system.
Therefore, rigorous results based on the Navier-Stokes
equations are not obtained too often. It was quite re-
cently that Doering and Constantin [1] succeeded in de-
riving a rigorous upper bound for the Reynolds number
dependence of the dissipation rate in plane-shear flow.
The idea is to substitute the velocity field by a chosen
flow, whose dissipation is shown to bound that of the
real flow. The chosen flow is different from the average
profile but also time independent and one-dimensional
only.

The question arises if the bound can be improved by
optimizing the chosen flow. Improvement seems possi-
ble since the bound is still considerably larger than mea-
sured dissipation rates (although measured [2] in another
flow, namely, in Taylor-Couette flow). A variational ap-
proach for the dissipation bound was proposed in [3],
which seems to capture dynamical aspects of the repre-
sentative flow. It is much more elaborate.

In the present paper, we stay within the simpler frame
of admitting stationary one-dimensional profiles as trial
functions, but optimize their choice. This results in a
minimum principle with a profile constraint. It, thus, is
a stationary counterpart of the more dynamical princi-
ple proposed in Ref. [3]. We derive our minimum prin-
ciple by using Schwarz’s inequality only. The proof is
rather simple and hopefully provides some insight into
the quality of the bound. The ansatz closely follows [1].
Because of its simplicity, our approach might be extend-
able to more complicated geometries. Due to the vari-
ational form, we exhaust the estimate within the given
stationary approach.

II. MOMENTUM FLUX AND DISSIPATION

Consider the three-dimensional flow u(x,t) between
two infinitely extended parallel planes (Fig. 1), one at rest
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and the other one moving with velocity U in z-direction.
The laminar flow profile corresponding to the shear U/L
is Ujam = €,Uz/L. Here, L denotes the distance between
the planes and 0 < z < L. Because of the shear there
is momentum flux. This can be calculated by averaging
the Navier-Stokes equations over z-y planes.

Ou;(x,t) = —u-Vu; — 9;p+vAu;, 1=1,2,3 , (1)

divua =0,
u(z =0) =0,

incompressibility , (2)
u(z =L) =Ue,,

boundary conditions . (3)

Here, p(x,t) is the kinematic pressure (i.e., the physical
pressure divided by the mass density p ) and v is the kine-
matic viscosity. x-y-plane averaging (---) 4 and averaging
on time (which is understood as included in (---)4) im-
ply for i = 1 the equation 0 = —95(uzu1) 4 +v0395(u1)a.
Therefore,

J31 = (usui)a — v93(u1) 4 = const (in z) (4)

is the conserved transverse momentum current density.
In the laminar case J3; = —vU/L and Js; = 0. For tur-
bulent flow the viscous term dominates in the vicinity of
the boundaries, whereas in the bulk mainly the correla-
tion (uguq)4 carries the momentum flux.

There is an exact relation between the transverse mo-
mentum flux and the dissipation rate, the latter one av-

mean
turbulent

FIG. 1. Plane-shear flow, laminar and mean turbulent pro-
files, schematic.
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eraged over the total flow volume. Multiply (1) by u,,

volume average (---) (as well as time average),

dA [ [ u? u?
VU;|jU;|; =€ = —f—v— [(’2- +P) u-— VV?] . (5)

For plane-shear flow on the right-hand side only, the v
term contributes and only at the upper (sheared) plane,

E€ = UUL_183(’U.1>A,Z=L = —UL~1J31 . (6)

€ also equals the mechanical power necessary to maintain
the shear [calculate either (F)/pAL)U or be aware that it
is the rate of energy loss]. Note that ¢ is the global volume
average of the dissipation rate, i.e., including the bound-
ary layers. Determining the time average of l/uf| (%)

from velocity signals u(x,t) measured in the turbulent
bulk will give an average bulk dissipation rate ep that
may differ considerably from e defined in equation (5).
In contrast, the transverse momentum flux can be mea-
sured also in the bulk as the transverse velocity corre-
lation @W3u;. One can nondimensionalize the transverse
momentum flux by expressing it in terms of the laminar
one, vUL™1, or in terms of the dissipative velocity vL~1!
squared. The former choice gives the momentum flux
analogon of the Nusselt number Nu describing heat flux,

Nus; = J31/vUL™! = Ree/UL7! . (7
Relation (6) was used. The latter choice leads to
Nug; = J31/(vL™1)? = Re?e /UL (8)

Both “momentum flux Nusselt numbers” are thus given
in terms of the dimensionless globally averaged dissipa-
tion rate

e/UL™! = c.(Re), (9)

where Re is the Reynolds number.
For the laminar plane-shear profile one gets

cc(Re) = 1/Re , laminar . (10)

If the flow becomes turbulent, there is increased dissipa-
tion and c.(Re) will be larger than 1/Re. It is shown
already in [4] (cf. also [5]) and again in [1] that 1/Re is
always a rigorous lower bound for c.(Re). Our aim here
is to obtain an upper bound for the dimensionless glob-
ally averaged dissipation rate c.(Re). This in turn will
lead to the momentum flux bound displayed in Fig. 2.

The Reynolds number dependence of the dimensionless
bulk dissipation rate e /u’sL_1 = c.,p and its crossover
from the laminar (1/Re) behavior to the constant level for
fully developed turbulence has recently been derived by
Lohse [6]. The effects of intermittency on c. g(Re) have
been analyzed in [7]. Experiments are reported in [8] and,
in particular, the effect of shear on the bulk dissipation
in [9]. Exact relations between global dissipation and
flux are also known for thermally driven turbulence [10];
in that case, also, the total volume averages differ appre-
ciably from the locally averaged bulk values [11]. In the
Rayleigh-Bénard flow

laminar bound

0 T T T
0 8v2 12V2 Re

FIG. 2. Dimensionless transverse momentum flux bounds.
DC bound indicates the Doering-Constantin bound [1], the
new bound results from (7) with /UL~ = c.(Re) from (31).

€= V’U.?lj =vk?’L™*(Nu-1)Ra,
€9 = n@ﬁ = kL 2A%Nu.

K is the temperature diffusivity, A the external tempera-
ture difference, Ra the Rayleigh number, Nu the Nusselt
number, and €y the temperature dissipation.

III. VARIATIONAL PRINCIPLE

Now the variational principle for a time-independent
flow profile is derived, whose dissipation rate bounds the
global € of the real flow. Now, decompose the physical
flow field into two parts,

u(x,t) = U(x) + v(x,t) . (11)

The U field will be chosen properly and v(x,t) is defined
by (11). This decomposition leads to the dissipation rate
bound,

E=V (U1.2|J + 2U,-|jv,-|j + %) S VUizlj’

(12)
provided U is chosen such that the sum of the last two
terms is negative. The properties which U shall have
are now listed: (i) time independent, U(x) ; (ii) incom-
pressible, div U = 0; (iii) satisfying the same boundary
conditions as u; (iv) parallel to mean flow, U = U e,; (v)
depending on height z only, U;(z); (vi) symmetry with

respect to z = L/2; (vii) satisfying 'u?lj +2v;);U;); <0 for

any v, “profile constraint.”
With the ansatz

U = e,Uy(z) = e,Uf(z/L) (13)

f0)=o0, f1)=1, (14)

the conditions (i) through (v) are satisfied. Because of
the symmetry (vi), we can restrict ourselves to 0 < £ <
1/2 and can write

f(0)=0, f(1/2) =1/2, (15)

instead of (14). By the choice (vi) the symmetry of the
physical flow field u is extended to the v field.
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It is now easy to calculate the € bound by inserting (13)
li.e., Uys = UL™'f'(€) with £ = z/L] into the rhs of (12),

1/2
e/U3L™! = ¢, < min 2Re—1/ e f'(&)2.  (16)
f o

The profile functions f(§) have to satisfy the boundary
conditions (15) and have to respect the profile constraint
resulting from (vii). We shall show that the inequality,

1/2
A dEE|f' ()] < V2/Re , (17)

for the trial profile f(£) is a sufficient condition to sat-
isfy the profile constraint (vii) under the specifications
(i) through (vi). In addition, some not necessarily sharp
estimates for the v field will be made. That means, this
inequality (17) does not exhaust the original profile con-
straint. We, therefore, denote it as the “restricted profile
constraint” for U.

Before proving (17) as the restricted profile constraint,
we remark that the special choice of a trial field U used
in [1], namely, a linear profile near the boundaries and
constant, z-independent flow in the center range, satis-
fies (13), (15); the only free parameter is the thickness §
of the linear boundary range:

fl¢)=¢/26,0<¢<6(<1/2) ,
f€)=1/2,6<¢£<1/2. (18)

The profile constraint (17) leads to § < 4v/2/Re. Since
J

2— 2 1
;vvaUl“ v AL

4U
vAL

IA

Note

¢L
/ v1|3(z')dz'
0

etc., leading to

ez eL 1/2
< / dz' 12 / 'uf‘s(z') dz') ,
0 0

1/2

dg€lf' (€] - (21)

< 2Re ( Vi3 3_|3) M

S
—v;v,;U;
p aild

There was no need to specialize the profile f(£), £ = z/L.
Next, the v derivatives can be bounded by

(2502,)"" <7 /va). (22)

Start with incompressibility vi|; +v2|2 +v33 = 0 and get

L2

2/ dz [qu(z,y)vlng%
1/2

/0 de /A dAvlvsf'(s)}

AU 1/2 ¢L
m/ﬂ dé Ifl(f)l/A’/o ’U1|3(z’)dzl

é is 1/2 at most, this only implies a restriction on ¢ if
Re > 81/2. For c., one immediately gets

1/Re,
ce(Re) < { 1/8v2 ,

This bound, first given by Doering and Constantin [1],
can be improved by avoiding the special choice (18).
Considering (16) as a minimum principle with the con-
straint (17) and the boundary conditions (15) allows us
to optimize the profile Uy = U f(z/L).

0 <Re<8V2,

8v/2 < Re < oo. (19)

IV. PROOF

The proof of the restricted profile constraint (17) can
be given by repeatedly using Schwarz’s inequality. The
first step is an equality still.

- —_ 2
1.] v3; + 203Uy = iz|j - ;Ui”jUilj (20)

from multiplying the equation of motion for Oiv; =
Oiu; = --- by v; and volume integrating. By incom-
pressibility, vanishing of v at the boundaries and sta-
tionarity of v2/2 one obtains after integrating by parts
v Uy 5 + m}llj + Vv,|J 55 =0, i.e., Eq. (20). [The prop-
erties (iv) and (v) imply that U;U;|; does not contribute.]

Next, we estimate the second term in (20). Let A
denote the area of the parallel planes (4 — o), the
volume is V = AL.

(/L)

EL
/ 21353(z')dz/
0

IA

V3 = E*‘zm-i—@and Zfla = @—1—;2;
53]; + a + (@-’rv—%—l;) + @ Also, from ab
(a +b?) /2, find \/f:ﬂ:\/ﬁ - \/ﬁ\/ﬁ/ﬁ
(1_’—12;"‘ 2@) /2v/2, leading directly to the derivative

bound (22). It is a safe though most probably not
exhausted estimate. Finally, the restricted profile con-
straint (17) follows by keeping the magnitude of the sec-
ond term in (20) below that of the first one, utilizing the
inequality (21).

IA

IA

V. SOLUTION

The minimum principle (16) for the dissipation rate to-
gether with the boundary conditions (15) and the profile
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constraint (17) can be solved analytically. Start by con-
verting the inequality of the restricted profile constraint
into an equality,

1/2
[Faaro=%2  ose<1. 3
0

In this form the constraint can be included in (16) with
a Lagrangean multiplier A. In the resulting c.(Re, a) one
optimizes with respect to a. Next, since f(£) has to grow
from O at the boundary to 1/2 in the center, we expect
f' to be positive. Intervals of negative f' would imply
others with even larger f' > 0, so leading to larger c.
from (16). Therefore, we look for f/(£) > 0, all £, and
skip the modulus signs | |. The Euler-Lagrange equation
of the variational principle then reads

f"(€) —Rer/4=0. (24)

The boundary conditions f(0) = 0 and f(1/2) = 1/2
determine the two integration constants. The resulting
profile f(z/L) is

o =Te+ (1-50)e. (25)

Inserting (25) into the constraint (23) fixes the La-

grangean multiplier,

48 (8v2a _ 1) . (26)

ARe,a) = g2 (T

This solves the minimum principle, provided f’'(§) stays
positive as was assumed.

f(€) =12¢ (Sﬁa - 1) +4 (1 ~ 6‘/§‘I> >0. (27)

Re Re

As long as Re is small enough, we can minimize c.(Re, a)
with a = Re/8+/2, thus f' = 1 and A = 0. This is possible
for 0 < Re < 8y/2. When Re exceeds 8/2 one has to
choose a = 1. To now guarantee f' > 0 even at £ =
1/2, the Reynolds number must be [from solving (27)]
Re < 12/2. In the range 8v/2 < Re < 12v/2 the profile
is quadratic in £ (since now A # 0, negative) and f'(1/2)
decreases from 1 down to 0, while f’(0) steepens from 1
to 2, i.e., a boundary layer develops.

If Re is even larger, Re > 124/2, f'(1/2) would become
negative. We, therefore, have to consider a smaller inter-
val 0 < ¢ <4, with § < 1/2, and f(8) = 1/2. The profile
function f stays constant from § to 1/2. This bound-

J
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FIG. 3. Rigorous bound on the total volume average
of the dissipation rate ¢/U?L™! versus Reynolds number
Re = UL/v. The arrows indicate the borders 8v/2 and 12v2
between the ranges laminar (I), developing boundary layer
(but still filling the whole cross section) (II), and turbulent
(III).

ary condition leads [by solving again the Euler-Lagrange
equation (24)] to

f(£)=—R—§5€2+(%‘ResM)5 ) 080,90

1

5"
(28)

As before, the multiplier A is obtained from the profile

constraint, ReAd? = 12(4v/2/Reé — 1). The condition
f'(8) = 0 implies ReAd? = —4. Combining both gives

5 =6v2/Re<1/2, (29)

since Re > 12v/2. ¢ is the thickness of the optimal
boundary layer. The profile of the boundary layer is
of second order, f(¢) = —(Re®/144)¢2 + (Re/6v/2)¢,
0<¢<J§<1/2, as A turns out to be A = —Re/18.

We now have calculated the optimal profiles as con-
trolled by Re and can easily determine c.(Re) from (16)
with the respective f'({) in the different Re ranges.
There are three such ranges.

(I) 0<Re< 8v/2, laminar range,

(I1) 8V2 < Re < 12V2,

development of boundary layer, (30)
(I11) 12/2 < Re < 0o, turbulence range.

Within these ranges c.(Re) and the corresponding pro-
files f(&;Re) can be summarized as follows:

1 1/Re, I
— < c.(Re) < { 4(96Re™? —12/2Re" ' 4+ 1)/Re, II (31)
Re 1/9v2, I
Us(z/L '3 I
Li/D) _ f(&Re) = { 6(8v/2Re ! —1)€2 +4(1 — 6v2Re )¢, 1I (32)

U

—(Re?/144)€2 + (Re/6V/2)¢, I ;
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uivL'=75 15 30

—6/L ]

0 ~ 0 Uy(z)/vL!

FIG. 4. Optimal time-independent profiles in the ranges
laminar (I), boundary layer developing (II), turbulent (III).
The corresponding Re are 7.5 (= 5.31/2), 15 (= 10.6y/2), and
30 (= 21.24/2). All profiles are f(¢) € C*[0,1]. The thickness
of the boundary layer decreases as § = 61/2/Re.

the profile given in III holds for 0 < ¢ < §, whereas
f(€) =1/2 is constant for § < £ < 1/2.

This dissipation bound (31) and some optimal pro-
files are displayed in Figs. 3 and 4. The optimal profile
develops a boundary layer whose thickness § decreases
o Re™'. But note that Uy(z/L) = Uf(£) is not the
time mean of the real physical turbulent flow but instead
the optimum for the £/U3L~1-bound under the provisos
(i) through (vi) and (17). In [4,5], an optimal profile
was obtained which still has a finite shear also in the
bulk. The provisos were more general, allowing for y-
dependent structure in the optimal field instead of our
choice (v). The approach suggested in [4,5] is asymptotic
in the Reynolds number, while the bound (31), here, is
rigorous for all Re (as in [1]).

VI. DISCUSSION

The effect of optimizing the profile instead of simply
choosing a linear ansatz (as in [1]) is only moderate.
The second order profile (32) improves the bound from
1/8+/2 to 1/94/2 obtained here. Within the conditions
(i) through (vi) and the restricted profile constraint (17)
this seems to exhaust the method of a stationary trial
profile which depends only on height z.

If one allows for a y dependence in addition, a some-
what different approach (the optimum theory introduced
by Busse [4,5], which gives asymptotic (Re — o00)
bounds) leads to an upper bound for ¢, which according
to Fig. 1 in Ref. [4(b)] is by about a factor of 4 smaller
than (31), but also Re independent. ILe., the correspond-

ing transverse momentum flux also is ﬁﬁgl o Re2.

The Re-independent bound 1/9v/2 (= 0.079) for
g/U3L™! has to be compared with the results in [6,7]
that eg/u'*L~! approaches the constant 0.6 (or, accord-
ing to data [8] a value near 1). Both well compare if, e.g.,
ep~eand v =~ U/2orifu' ~U/3 and eg ~ 0.3¢.

According to Ref. [7] the presence of scaling corrections
in the exponent of the structure function D(r) due to in-
termittency leads to a power law decrease of c. p(Re)
with increasing Re. One expects a similar behavior of
ce(Re). Therefore, if we introduce the scaling exponent 3

by Nus; o< Re®, the value 3 = 1 corresponds to a Re inde-
pendent c. as found for nonintermittency corrected D(r)
(cf. [6]), whereas 8 < 1 corresponds to intermittency cor-
rections in the scaling behavior of turbulent flow (cf. [7]).
Our bound (31) corresponds to classical, nonintermittent
scaling as described by the Kolmogorov-Obukhov theory.
Precise measurements of 3 would allow to identify scaling
corrections. According to recent work, 8 might be less
than 1 in an intermediate Re range but is expected to ap-
proach unity asymptotically with Re — oo, see [12-15].
The data reported in [2] (see also [1]) seem to be com-
patible with this scenario.

An asymptotically constant dimensionless dissipation
rate c. means that the transverse momentum flux Nusselt
number (7) scales as Nug; o Re. To be more precise,
we have [from (7)] Nus; < Re/9\/§ or the transverse
momentum flux bound,

Js1 <U?/9V2 . (33)

The linear scaling Nus; o Re [or the explicit expres-
sion (33)] is equivalent to an L independence of the trans-
verse momentum flux J3;. Namely, Nus; o Re? together
with Nus; = J3;/vUL™! and L independent J3; implies
B = 1 by comparison of L exponents. Thus, any devia-
tion of the Re scaling exponent of Nus; from unity, which
is not excluded yet by the experiments (cf. [2,16]) implies
that the transverse momentum flux will depend on the
channel width L, however large L may be.

This scaling argument can be generalized to include
the boundary layers of thickness § and the velocity fluc-
tuations u' in the bulk, if similar scaling arguments are
used as introduced in [17] to describe thermally driven
(Rayleigh-Bénard) flow. Let Nus; o Re?, boundary
layer thickness 6/L o« Re™®, and bulk velocity fluctu-
ations «//vL~! o Re?. Then, relate the boundary layer
with the bulk by continuity of transverse momentum flux.
(a) In the viscous boundary layer it is J3; ~ vU/§, thus
Nus, ~ L/é, ie., B = a. (b) In the bulk J3; ~ («/)?,
i.e., Nus; ~ Re?” ! or 8 = 2y — 1. (c) The dissipation
term of the Navier-Stokes equation in the bulk has to be
balanced by the nonlinear transport, vu'/n? ~ (u')%/9.
Provided 4 is of the order of the Kolmogorov length 7,
this implies u'6 /v ~ 1 and, thus, vy = a (= 8). From (a),
(b), and (c) one concludes B = a = v = 1. This means,
consistent with the discussion before, that Nus; o« Re,
ce o Re?, §/L « Re™, v/ « vL 'Re = U. Again,
we get “classical” scaling in agreement with the rigorous
bound ¢, from Eq. (31) in range III.
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